Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447510

RESUMO

Untreated wastewater pollution causes environmental degradation, health issues, and ecosystem disruption. Geopolymers offer sustainable, eco-friendly alternatives to traditional cement-based materials for wastewater solidification and removal. In this study, we investigate how wastewater containing organic and inorganic pollutants can be removed using geopolymer mixes based on metakaolin incorporation with cement kiln dust as an eco-friendly material. The present investigation compares the efficacy of two different techniques (solidification and adsorption) for reducing dye contaminants and heavy metals from wastewater using a geopolymer based on metakaolin incorporation with cement kiln dust. This study investigated the adsorption capacity of a geopolymer based on metakaolin incorporating two different ratios (20% and 40% by weight) of cement kiln dust (MC1 and MC2) for the reactive black 5 dyeing bath effluent (RBD) only and in a combination of 1200 mg/L of Pb2+ and Cd2+, each separately, in aqueous solutions under different adsorption parameters. The results of the adsorption technique for the two prepared geopolymer mixes, MC1 and MC2, show that MC1 has a higher adsorption activity than MC2 toward the reactive black 5 dyeing bath effluent both alone and in combination with Pb2+ and Cd2+ ions separately. The study also looked at using MC1 mix to stabilize and solidify both the dyeing bath effluent alone and its combination with 1200 mg/L of each heavy metal individually inside the geopolymer matrix for different time intervals up to 60 days of water curing at room temperature. The geopolymer matrix formed during the process was analyzed using FTIR, SEM, and XRD techniques to examine the phases of hydration products formed. The results showed that MC1 effectively adsorbs, stabilizes, and solidifies the dying bath effluent for up to 60 days, even with high heavy metal concentrations. On the other hand, geopolymer mixes showed an increase in mechanical properties when hydration time was increased to 60 days. According to our findings, the type of geopolymer developed from metakaolin and 20 wt.% cement kiln dust has the potential to be employed in the treatment of wastewater because it has good adsorption and solidification activity for the reactive black 5 dye effluent alone and for a mixture of dye pollutants with both Pb2+ and Cd2+ ions separately. Our results have significant implications for wastewater treatment and environmental remediation efforts, as they offer a sustainable solution for managing hazardous waste materials.

2.
3 Biotech ; 12(6): 142, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664650

RESUMO

In the current investigation, the capacity of different yeast strains to decolorize reactive black 5 (RB-5) was assessed. A comparative study between the different strains demonstrated that Saccharomyces cerevisiae X19G2 exhibited the highest decolorization rate (69.20 ± 1.16%) after 48 h of incubation. This strain was selected to optimize the medium components' concentrations for maximum RB-5 decolorization. Response-surface methodology (RSM) was tested for the most significant parameters (glucose, yeast extract and RB-5 dye concentrations) that were previously determined by Plackett-Burman design. A dye decolorization rate of 99.59 ± 0.24% was achieved within 48 h using a maximum RB-5 concentration (0.15 g/L) with glucose and yeast extract concentrations equalling to 10.5 g/L and 1 g/L, respectively. Experimental data results proved to fit well with the pseudo-second order kinetics model. The phytotoxicity assessment was carried out using Raphanus sativus seeds to determine the toxicity of RB-5 before and after treatment by S. cerevisiae. Results suggested that germination rate and the length of seeds radical irrigated with 0.15 g/L of RB-5 decreased by 30 and 53%, compared to those irrigated with treated solution. Therefore, metabolites derived from decolorization of RB-5 by S. cerevisiae X19G2 were significantly less toxic than the original dye.

3.
Environ Sci Pollut Res Int ; 27(15): 17438-17445, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31119545

RESUMO

In this study, copper oxide nanorods were synthesized via surfactant-assisted chemical precipitation method and characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and UV-Visible spectrometer. XRD result reveals that CuO nanorods were structured in the monoclinic phase. SEM image suggested that synthesized CuO were shaped like nanorod with approximately 20-40 nm width and 500-800 nm length. The observed band gap calculated from UV-Visible absorption studies is 1.45 eV. As-prepared CuO nanorods were applied as a photocatalyst for the degradation of textile dye Reactive Black 5 (RB-5) in aqueous solution under the presence of visible light. The result exhibited that an enhanced degradation of RB-5 was achieved around 98% within 300 min and the experimental values were well matched with the linear fit model (R2 = 0.97) and the observed rate constant found to be 5 × 10-3 min-1. Therefore, as-synthesized CuO nanorods can be applied as a potential photocatalyst material for the degradation of organic pollutants in the wastewater.


Assuntos
Nanotubos , Águas Residuárias , Catálise , Cobre , Naftalenossulfonatos , Óxidos , Tensoativos
4.
J Environ Sci (China) ; 54: 184-195, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28391928

RESUMO

In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye (RB5) from synthetic contaminated water was used as a model system. At a constant anode surface area, identical process operating parameters and batch process mode, the iron mesh double layer electrode showed better performance compared to the conventional single layer iron mesh. The double layer electrode was characterized by RB5 and chemical oxygen demand (COD) removal efficiency of 98.2% and 97.7%, respectively, kinetic rate constant of 0.0385/min, diffusion coefficient of 4.9×10-5cm2/sec and electrical energy consumption of 20.53kWh/kgdye removed. In the continuous flow system, the optimum conditions suggested by Response Surface Methodology (RSM) are: initial solution pH of 6.29, current density of 1.6mA/cm2, electrolyte dose of 0.15g/L and flow rate of 11.47mL/min which resulted in an RB5 removal efficiency of 81.62%.


Assuntos
Técnicas Eletroquímicas/métodos , Naftalenossulfonatos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Eletrodos , Ferro/química , Cinética , Águas Residuárias/química
5.
Rev. colomb. biotecnol ; 11(1): 59-72, jul. 2009. tab, graf
Artigo em Espanhol | LILACS | ID: lil-590632

RESUMO

La presencia de colorantes azoicos en aguas residuales de la industria textil es un problema ambiental y sanitario, porque muchos de estos compuestos son cancerígenos. Los tratamientos biológicos son una alternativa para la remoción de ese tipo de colorantes. En el presente trabajo se evaluó el efecto de tres hongos de podredumbre blanca, Trametes versicolor, Pleurotus ostreatus y Phanerochaete chrysosporium sobre la decoloración de un agua que contiene colorante negro reactivo 5 (NR5), ampliamente usado en la industria textil. Se estudió la inmovilización de estos hongos en dos soportes, espuma de poliuretano y estropajo (L. cylíndrica) para seleccionar el mejor soporte y el hongo con mayor capacidad para la decoloración. Ambos soportes fueron igualmente efectivos, pero se seleccionó estropajo por ser un producto natural. El hongo que generó los mayores porcentajes de decoloración en 4 días fue Trametes versicolor, con 96%, 98% y 98% para agua con concentración de NR5 300 ppm, 150 ppm y 75 ppm, respectivamente. La actividad lacasa para cada concentración de NR5 fue 8 U L-1, 7 U L-1 y 5 U L-1.


Waste water from the textile industry represents a major environmental and health problem because it contains azo dyes whose carcirogenic effect has been tested in research. Biological treatment represents a valuable alternative for removing these dyes. The effect of Trametes versicolor, Pleurotus ostreatus and Phanerochaete chrysosporium rot fungi on decoloration of water containing reactive black five (NR5) textile dye was evaluated in this work. Immobilising the fungi on polyurethane foam and luffa sponge (Luffa cylindrica) supports was studied in order to select the best support and the fungi having the best decolorisation. Both supports were equally effective; however, the luffa sponge was selected as being a natural product. Trametes versicolor produced the highest decolorisation percentages in four days (96%, 98% and 98% for 300 ppm, 150 ppm and 75 ppm NR5 concentrations, respectively) while lacase enzyme activity was 8 UL-1, 7 UL-1 and 5 UL-1 for each of them.


Assuntos
Trametes/classificação , Trametes/química , Trametes/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...